Geometric data fitting

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Data Fitting

Given a dense set of points lying on or near an embedded submanifold M0 ⊂ Rn of Euclidean space, the manifold fitting problem is to find an embedding F :M → Rn that approximatesM0 in the sense of least squares. When the dataset is modeled by a probability distribution, the fitting problem reduces to that of finding an embedding that minimizes Ed[F], the expected square of the distance from a po...

متن کامل

Fitting geometric curves to observed data

Contents Preface v Chapter 1. Introduction and historic overview 1 1.1. Classical regression 1 1.2. Errors-in-variables (EIV) model 3 1.3. Geometric fit 5 1.4. Solving a general EIV problem 8 1.5. Non-linear nature of the 'linear' EIV 11 1.6. Statistical properties of the orthogonal fit 13 1.7. Relation to total least squares (TLS) 15 1.8. Nonlinear models 16 1.9. Notation and preliminaries 17 ...

متن کامل

Hyperaccuracy for Geometric Fitting

A rigorous accuracy analysis is given to various techniques for estimating parameters of geometric models from noisy data. It is first pointed out that parameter estimation for computer vision applications is very different in nature from traditional statistical analysis and that a different mathematical framework is necessary in such a domain. After general theories on estimation and accuracy ...

متن کامل

Performance evaluation of iterative geometric fitting algorithms

The convergence performance of typical numerical schemes for geometric fitting for computer vision applications is compared. First, the problem and the associated KCR lower bound are stated. Then, three well known fitting algorithms are described: FNS, HEIV, and renormalization. To these, we add a special variant of Gauss-Newton iterations. For initialization of iterations, random choice, least...

متن کامل

Fitting Matrix Geometric Distributions by Model Reduction

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2004

ISSN: 1085-3375

DOI: 10.1155/s1085337504401043